

Università degli Studi di Padova Dipartimento di Scienze Ginecologiche e della Riproduzione Umana Scuola di Specializzazione in Ginecologia e Ostetricia Direttore Prof. Giovanni Battista Nardelli

Portio, precancerous lesion screening and managment updates

Dott. Simone Fagherazzi

Based on Guan P et al. [3].

6

HPV, pathogenic sierotipes

	High-Risk Alpha	Low-Risk Alpha				
	encodes E6* products	no E6* products				
	binding and degradation of • p53 • specific PDZ-domain proteins (e.g. Dig, MAGI-1, Scribble)	weaker binding (no degradation) of •p53 •no binding of PDZ-domain proteins				
	interact with the E6AP ubiquitin ligase					
	inhibition of apoptosis	unknown				
6	bypass of growth arrest following DNA damage	normal growth arrest following DNA damage				
	inhibition of keratinocyte differentiation	unknown				
	inhibition of interferon response	weaker inhibition of interferon response				
	activation of signaling pathways *Akt *Wnt *Notch *mTORC1	unknown				
	telomerase activation	no activation				
	c-myc activation	no activation				
	binding and degradation of	weaker binding (no degradation) of				
	•nRb	•nRh				
	•n107	•p107				
	•p130	•E2F1				
	binding (no degradation) of •E2F1 •Cuilin2 •HDAC	binding of •p130				
E7	binding of regulatory proteins including E2F6, p600, HAT, PP2A induction of cell cycle entry and DNA synthesis the in genome amplification					
	induction of genome instability	no stimulation of instability				
	suppression of STAT-1 function	no suppression				
	immortalization and transformation functions	no such functions				
	activation of signaling pathways •Akt	unknown				

Life Cycle of Hr-Risk HPVs in Cervical Epithelium

Cell cycle entry and cell proliferation only in E6/E7 expression stimulates cell cycle entry In high-risk HPV infections, E6/E7 expression stimulates additional cell cycle entry and cell the basal and parabasal cell lavers stimulated (but not cell proliferation) in the upper by growth factors (blue box). No cell cycle epithelial layers allowing genome amplification in low and also high-risk HPV proliferation in the lower and middle epithelial layers leading to neoplasia (red box). E6/E7 entry in the superficial cell layers. infections (green box). Basal cell proliferation may still be stimulated by growth factors as also drive cell cycle entry in the upper epithelial layers to allow genome amplification as shown for low-risk HPV shown for the uninfected epithelium (blue box infections (green box).

ii) LOW-RISK HPV INFECTION

i) UNINFECTED EPITHELIUM

E6/E7 mediate proliferation of the basal and para-basal cells, facilitating lesion growth

iii) HIGH-RISK HPV INFECTION

Initial viral replication in the basal cells requires **E1** and **E2** proteins.

Deregulation of **E6/E7** expression is critical in determining neoplastic grade

Integration of the viral genome into the cell genome occurs in many high-grade lesions, although cancer can arise from cells exclusively containing **episomes**

HPV, poor immunitary response

Fig. 1. Life cycle of human papillomavirus.

Available online at www.sciencedirect.com ScienceDirect Gynecologic Oncology 109 (2008) S15-S21

Gynecologic Oncology

www.elsevier.com/locate/ygyno

Immunobiology of HPV and HPV vaccines

Margaret Stanley * Department of Pathology, Tennis Court Road, University of Cambridge, CB2 10P UK Received 7 February 2008

- No inflammation response
- Effective Interferon I escape • mechanism
- No spread of virions before a massive development of mature virus
- antibodies levels after Low primary infection that make reinfection by same serotipe a little harder but not possible.

6

HPV, cancer raise from precancerous lesions

Timeline Progression

N = cervical intraepithelial neoplasia; CMI = cell-mediated immunity; HrHPV = high-risk human pillomavinus; LrHPV = low risk human papillomavinus.

Exclusively intraepithelial infectious cycle no cytolysis or death, no viraemia, long infectious cycle

Clinical findings

Normal cervix

CIN I

CIN III

Cervical Cancer

HPV, rate of progression

6

HPV, rate of progression

The NEW ENGLAND JOURNAL of MEDICINE

Quadrivalent Vaccine against Human Papillomavirus to Prevent Anogenital Diseases Suzanne M. Garland, M.D., Mauricio Hernandez-Avila, M.D.,

The NEW ENGLAND JOURNAL of MEDICINE

MAY 10, 2007

VOL. 356

NO. 19

ESTABLISHED IN 1812

Quadrivalent Vaccine against Human Papillomavirus to Prevent High-Grade Cervical Lesions The FUTURE II Study Group*

Gardasil is Efficacious Against HPV 16 and 18-Related Disease

Analysis of CIN 2/3 and AIS end points included protocol 005.

GARDASIL Worldwide Product Circular. Merck & Co., Inc., Whitehouse Station, NJ, USA.

No.		
12		

	Monula ander Havingeelon						
No. at Risk							
Vaccine	6087	5915	5808	5709	5564	5406	2909
Placebo	6080	5939	5819	5718	5569	5399	2982
Cumulative No. of Subjects with an End Point							
Vaccine	0	23	76	112	142	161	196
Placebo	0	24	78	129	161	196	234

6

HPV, rate of progression

YEAR	CLINICAL TRIAL	STUDY POPULATION	HPV VACCINE	KEY CONCLUSIONS
2007	FUTURE 1 ⁵⁴	5,455 women from Latin America or North America, age 16–24	Quadrivalent	The vaccine was 100% effective in preventing HPV-related anogenital disease in women not previously infected with HPV
				The vaccine was also 100% effective in prevent- ing cervical intraepithelial neoplasia (CIN) grades I, II, and III and carcinoma in situ
2007	FUTURE II ²⁸	12,000 women from Europe and Latin America, age 15–26	Quadrivalent	The vaccine was effective for the prevention of HPV 16- or 18-related CIN grades II and III and carcinoma in situ
2009	PATRICIA ⁷⁹	18,000 women from Europe or Asia Pacific, age 15–25	Bivalent	The vaccine was 92.9% effective for the preven- tion of CIN grades II and III, carcinoma in situ, or cancer
2011	Giuliano et al ⁵⁵	4,065 men, age 16 26	Quadrivalent	The vaccine was 90.4% effective in preventing external genital lesions associated with HPV types 6, 11, 16, and 18 in men not previously infected with HPV
2011	Paleísky et al ²³	598 men who have sex with men, age 16–26	Quadrivalent	The vaccine was 77.5% effective against anal intraepithelial neoplasia associated with HPV 6,11, 16, or 18 in men not previously infected with HPV

UTURE – Females United to Unilaterally Reduce Endo/ectocervical Disease; PATRICIA – Papilloma Trial Against Cancer in Young Adults

EVIEW
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus according to
EDUCATIONAL OBJECTIVE Readers will recommend vacchation against human papillomavirus descend readown to the devised of the devised

Composition of Gardasil.

Safe, effective, underused

Material*	Amount
HPV Type 6 L1 protein	20 µg
HPV Type 11 L1 protein	40 µg
HPV Type 16 L1 protein	40 µg
HPV Type 18 L1 protein	20 µg
Aluminum hydroxyphosphate sulfate adjuvant	225 µg
Sodium chloride	9.56 mg
Sodium borate	35 µg
L-histidine	0.78 mg
Polysorbate 80	50 µg
Yeast protein	<7 µg

Vaccine is <u>raccomended in a</u> <u>population of young female</u> aged less than thirteen that haven't started their sexual life yet.

Vaccine is suggested in women with previous infection to aid the immune system and to prevent re-infections

Xian Wen Jin et al «Human papillomavirus vaccine: Safe, effective, underused» Cleveland J. of M. 2013

6

HPV, cross-protection

Contents lists available at ScienceDirect	Contents lists available at ScienceOfrect Endpoint 6-month persistent infection with HPV-16/18 12 month persistent infection with HPV-16/18						8			
Vaccine	DNA negative and seronegative at study entry	Group	Ν	n	Vaccine efficacy (97.9% CI)	P-value	N	n	Vaccine Efficacy (97.9% Cl)	<i>P</i> -value
ELSEVIER journal homepage: www.elsevier.com/locate/vaccine	Туре 16/18	HPV	6344	38	80.4%	< 0.0001	3386	11	75.9%	<0.0001
		Control	6402	193	(70.4 to 87.4)		3437	46	(47.7 to 90.2)	
Efficacy duration of immunity and cross protection after HDV vaccination;	Туре 16	HPV	5493	23	84.1%	< 0.0001	2945	7	79.9%	<0.0001
A review of the evidence		Control	5520	144	(73.5 to 91.1)		2972	35	(48.3 to 93.8)	
A leview of the evidence	Type 18	HPV	5896	15	74.0%	< 0.0001	3143	4	66.2%	0.0766
Paolo Bonanni*, Sara Boccalini, Angela Bechini		Controls	5939	58	(49.1 to 8.8)		3190	12	(-32.6 to 94.0)	
Department of Public Health, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy										
	Endpoint	6-month p	ersistent i	nfection v	with oncogenic HPV typ	es	12-	month p	ersistent infection with onc	ogenic HPV types
	Type specific DNA negative	Group	N	n	Vaccine efficac	v P-valu	e N	1	1 Vaccine Efficacy	P-value
11	at study entry	dittap			(97.9% CI)	,			(97.9% CI)	
6 7	Ture 45	LIDV	C724	10	50.0%	0.010	r 200		2 (2.20)	0.2202
	Type 45	HPV	6/24	10	0 09.9%	0.016	D 300	54)1	3 62.3% 9 (02.3 to 05.4)	0.2262
57 to 44 32 low Pick	Turna 21		6/4/ 6615	20	2.01000.2)	0.017	2 25'	7	0 (-95.2 t0 95.4) 15 10.99	0.9509
	Туре 51	Control	6667	4/	(0.5 to 50.5)	0.017	2 221 251	20	13 10.0% 17 (115.2 to 62.6)	0.0390
	Tune 22		6702	21	26.5%	0.056	:0 35'	00 1/1	6 <u>4519</u>	0 2218
	Type 55	Control	6736	40	(-99 to 64.0)	0.050	36	13	(-91.8 to 86.5)	0.5510
	Type 52	HDV	6532	70	31.6%	0.000	3 34	20	16 46.5%	0.0533
Para High Risk	Type 52	Control	6573	116	(3.5 to 51.9)	0.000	350	18	(-12.3 to 75.8)	0.0555
	Type 58	HPV	6688	43	-31.4%	0.251	5 35	53	6 -1.1%	1.000
	- J F	Control	6734	33	(-132.1 to 24.7)	36)1	6 (-372.0 to 78.4)	
	Oncogenic HPV other than	HPV	6773	505	9.0%	0.141	0 36	1	100 27.1%	0.0174
	vaccine types	Control	6804	554	(-5.1 to 21.2)		36	32	137 (0.5 to 46.8)	
	Oncogenic HPV	HPV	6773	545	21.9%	<0.000	1 36	1	112 38.2%	< 0.0001
$\begin{vmatrix} 35 & 37 \\ 16 & 33 \end{vmatrix} = 58 \begin{vmatrix} 52 \\ 18 \\ 36 \end{vmatrix}$	2	Control	6804	691	(10.7 to 31.7)		36	32	180 (18.0 to 53.7)	
10 47	-									

CIN 2/3 or AIS due to	Quadrivalent vaccine N = 4616	Placebo <u>N</u> = 4675	Efficacy	95% CI
HPV-31/45	8	21	62%	(10,85
HPV-31/33/45/52/58	27	48	43%	(7,66)
10 oncogenic HPV types (non-vaccine types) 31, 33, 35, 39, 45, 51, 52, 56, 58, 59	38	62	38%	(6,60)

Data strongly suggest that both vaccines can have a variable level of cross protection against HPV types genetically and antigenically-closely related to vaccine types. Demonstration of cross protection against combined endpoints (CIN2/3 and AIS) for combined HPV types, and, as a single type, for HPV-31, has been reached for the quadrivalent vaccine, and there is evidence of cross protection against HPV 31 and 45 persistent infections (as single types) for the bivalent vaccine.

HPV, cross-protection

The opportunity of <u>cross-protection</u> against other non-vaccine HPVtypes <u>is an</u> <u>extremely important key factor of</u> <u>interest</u>, because it could increase the fraction of cervical cancers prevented.

HPV Type	Species	L1 homology
HPV 16	A9	
HPV 45	A7	67%
HPV 31	A 9	83%
HPV 33	A9	<mark>81</mark> %
HPV 52	A9	<mark>80</mark> %
HPV 58	A9	<mark>80</mark> %
HPV 35	A9	<mark>82</mark> %
HPV 59	A7	<u>65%</u>
HPV 39	47	64%

Evidence of crossprotection against either infection or disease by nonvaccine type comes from trials of both Bivalent and Quadrivalent vaccines.

HPV Type	Species	L1 homology
HPV 18	A7	
HPV 45	A7	88%
HPV 31	A9	66%
HPV 33	A9	66%
HPV 52	A9	66%
HPV 58	A9	66%
HPV 35	A9	65%
HPV 59	A7	78%
HPV 39	A7	77%

HPV, vaccine as intention to treat

Letter

Gardasil administration to hr-HPV-positive women and their partners

Salvatore Gizzo, Marco Noventa, and Giovanni Battista Nardelli

Department of Woman and Child Health, University of Padua, Giustiniani, 3, 35128 Padua, Italy

The rationale for proposing the use of Gardasil in an intention-to-treat basis should have two aims: (i) strengthening of the immunological response to the hr-HPV genotype already detected; and (ii) prevention of *de novo* coinfection and superinfection by a different hr-HPV genotype to that already detected in non-naïve women.

The public health costs of non-naïve mass vaccination programs currently seem to be higher than second-level treatment and follow up of this cohort of patients [8], so a short-term cost-benefit analysis does not recommend universal vaccination. However, similar to the international effort to eradicate smallpox, hr-HPV herd immunity can only be achieved when 100% of the naïve population is immune. According to long-term cost-benefit analysis, vaccination of male and non-naïve women would reduce the time necessary to obtain herd immunity and could represent a real way to eradicate an infection responsible for a significant number of worldwide cancer deaths. In our opinion, a long-term pilot study of approximately 10 years (a reasonable interval necessary for cancer onset after hr-HPV infection) should be conducted in developed countries to evaluate the health and economic benefits of non-naïve HPV vaccination programs.

HPV, vaccine as intention to treat

Matherials and Methods

We enroll Patients who underwent a routinary or follow up pap test at Gynecological and Obstetrical Clinic, University of Padua. Were suggested to vaccination in

- Women founded with a positive citology.
- Women with a latest negative citology but previous evidence of either HPV DNA TEST positivity or cervical pathology.

Pazienti sottoposte a Vaccinazione HPV quadrivalente Gardasil

Vledico		~		ID paziente	(Nuovo)
Cognome		Nome		Nata il	
Tel		Mail		⊙ _{Fer}	mmina O Maschio
Indirizzo				CF	
	peso	altezza		Partner Stabile	2
Pap-Test	Esito		v D	ata	
Colposcopia	Esito		✓ D	ata	
dna	HR D		D	ata	
Data Vaccino		Note			

Triple A Guideline: ACS, ASCCP, American Society for Clinical Pathology *Cancer J CLIN March 2012*

Age	Screening
< 21	No Screening
21-29	Cytology alone every 3 years
30-65	Preferred: Cytology + HPV every 5 years* OR
	Acceptable: Cytology alone every 3 years*
> 65	No screening, following adequate neg prior screens
After total hysterectomy	No screening, if no history of CIN2+ in the past 20 years of cervical cancer ever

*If cytology result is negative or ASCUS + HPV negative

© Copyright, 2013, American Society for Colposcopy and Cervical Pathology. All rights reserved.

CIN1

HPV, ASCCP guidelines

Management of Women with No Lesion or Biopsy-confirmed Cervical Intraepithelial Neoplasia — Grade 1 (CIN1) Preceded by "Lesser Abnormalities"**

Management of Women with No Lesion or Biopsy-confirmed Cervical Intraepithelial Neoplasia — Grade 1 (CIN1) Preceded by ASC-H or HSIL Cytology

© Copyright, 2013, American Society for Colposcopy and Cervical Pathology. All rights reserved.

HPV vaccine, new perspectives

Cancer Immunol Immunother (2004) 53: 642–650 DOI 10.1007/s00262-004-0501-4

ORIGINAL ARTICLE

Sophie Hallez · Philippe Simon · Frédéric Maudoux Jean Doyen · Jean-Christophe Noël · Aude Beliard Xavier Capelle · Frédéric Buxant · Isabelle Fayt Anne-Cécile Lagrost · Pascale Hubert · Colette Gerday Arsène Burny · Jacques Boniver · Jean-Michel Foidart Philippe Delvenne · Nathalie Jacobs

Phase I/II trial of immunogenicity of a human papillomavirus (HPV) type 16 E7 protein-based vaccine in women with oncogenic HPV-positive cervical intraepithelial neoplasia

E7- and PD-specific IgG. Conclusions: The encouraging results obtained from this study performed on a limited number of subjects justify further analysis of the efficacy of the PD-E7/AS02B vaccine in CIN patients.

6

HPV, scientific litterature debate

OPEN access Freely available online

PLOS ONE

Systematic Review and Meta-Analysis of L1-VLP-Based Human Papillomavirus Vaccine Efficacy against Anogenital Pre-Cancer in Women with Evidence of Prior HPV Exposure

Ada Miltz*, Huw Price, Maryam Shahmanesh, Andrew Copas, Richard Gilson Centre for Sexual Health and HIV Research, Research Department of Infection and Population Health, Mortimer Market Centre, University College London, London, United Kingdom

Discussion

There was no evidence from this analysis that HPV vaccines given to women with evidence of prior HPV infection can prevent vaccine-type HPV-associated CIN3+ and VIN2-3 or VaIN2-3. However, there are several limitations to this review. The trials

Conclusions: There was no evidence that HPV vaccines are effective in preventing vaccine-type HPV associated pre-cancer in women with evidence of prior HPV exposure. Small effects of vaccination however cannot be excluded and a longer-term benefit in preventing re-infection remains possible.

The Ethics and Politics of Compulsory HPV Vaccination

James Colgrove, Ph.D., M.P.H.

Too Fast or Not Too Fast: The FDA's Approval of Merck's HPV Vaccine Gardasil

Lucija Tomljenovic and Christopher A. Shaw

conflicts of interest in the practice of medicine \bullet fall 2012

