Corso di Laurea in Medicina e Chirugia Corso Integrato di Pediatria Generale e Specialistica Anno Accademico 2014-2015

DISIDRATAZIONE IDRATAZIONE

Prof. L. Da Dalt

Obiettivi – Descrivere

- > Le peculiarità del metabolismo idrico nel bambino
- > Gli stati di disidratazione e la loro gravità clinica
- > I principi della terapia reidratante

PECULIARITA' DEL METABOLISMO IDRICO DEL BAMBINO

① Volume d'acqua più elevato in rapporto al peso corporeo

85-90% nel feto

70-75% alla nascita

al 6° mese

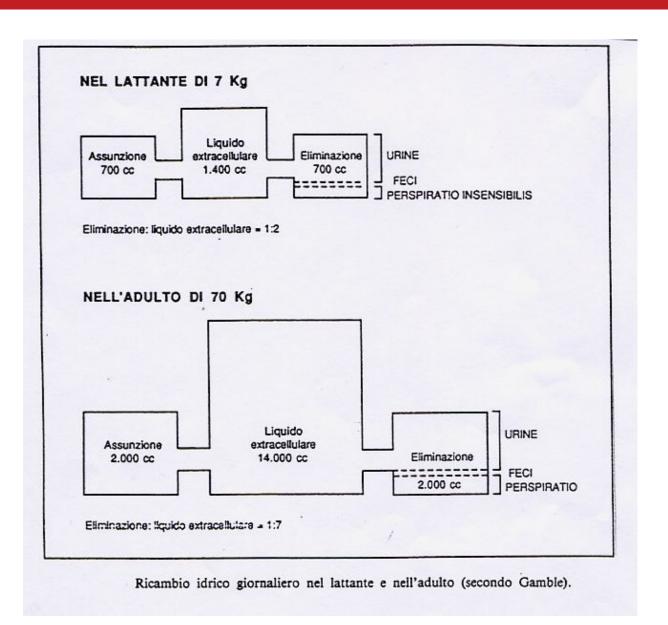
55% nell' età adulta

② Differente ripartizione tra i due grandi compartimenti

* intracellulare

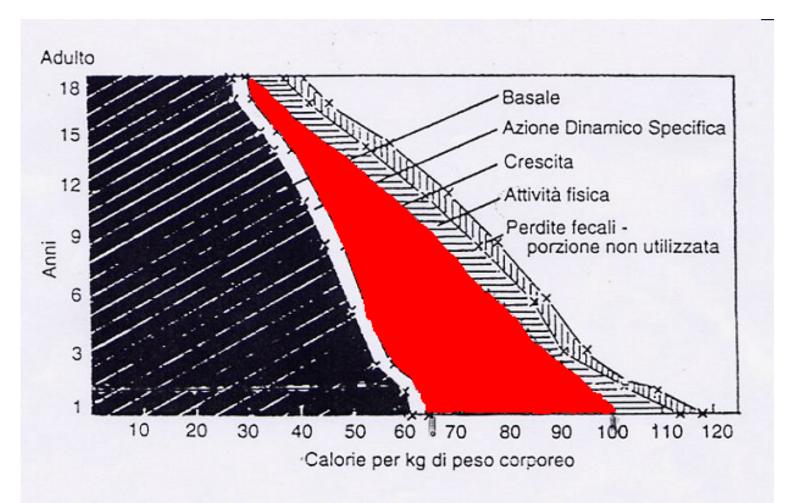
* extracellulare (vasi – interstizi)

diminuisce con l'età


40% alla nascita

25-30% alla fine 1° anno

20-25% successivamente


3 Ricambio giornaliero molto più elevato (4-5 volte rispetto all' adulto)

5% dell'acqua totale sono ricambiate ogni giorno 12% " extracellulare nell'adulto

RICAMBIO GIORNALIERO PIÙ ELEVATO: PERCHÉ?

- ➤ Maggior superficie corporea rispetto al peso → maggior evaporazione
- Minor capacità di concentrare le urine (neonato)
- > MAGGIOR CONSUMO CALORICO E PROTEICO IN RAPPORTO AL PESO
- → MAGGIOR NECESSITÀ D'ACQUA PER ELIMINARE I SOLUTI

Spesa calorica totale giornaliera con distribuzione approssimativa tra i singoli fattori in relazione all'età e al peso (Caloria = grande caloria = 1kcal = 1 Cal).

Nelle prime età della vita il fabbisogno calorico giornaliero in rapporto al peso corporeo (Quoziente Energetico) è maggiore

1°	trimestre	120 kcal/kg

3-12 mesi 100-110 kcal/kg

> 12 mesi ↓ 10 kcal/kg ogni 3 anni

adulto 30-40 kcal/kg

CALCOLO DEL FABBISOGNO CALORICO

① Metodo "Holliday – Segan"

= stima del fabbisogno calorico per "categorie fisse" di peso

per primi 10 kg di peso: ~ 100 kcal/kg/die

per kg di peso da 10 a 20: 50 kcal/kg/die

per kg di peso oltre 20: 20 kcal/kg/die

2 Metodo "Superficie corporea"

1500 kcal/m²/die Non utilizzabile per i bambini < 10kg

FABBISOGNO IDRO ELETTROLITICO

Per metabolizzare 100 kcal servono circa

- H₂O : 100ml

~ 60 ml H₂O per diuresi

~ 30-35 ml H₂O per perspiratio

~ 5 ml H₂O per feci

- Na: 2-4 mEq

- K : 2-3 mEq

CALCOLO DEL FABBISOGNO IDRO ELETTROLITICO

```
    Metodo "Holliday – Segan"
    - H<sub>2</sub>O
    ner Kg da 1 a 10 = 100 m
```

```
per Kg da 1 a 10 = 100 ml/kg/die \simeq 4 ml/kg/ora
per Kg da 10 a 20 = 50 ml/kg/die \simeq 2 ml/kg/ora
per Kg > 20 = 20 ml/kg/die \simeq 1 ml/kg/ora
```

Na: 3 mEq/100 ml H₂O
 K: 2 mEq/100 ml H₂O

2 Metodo "Superficie corporea"

- H₂O 1500 ml/m²/die

- Na : 30-50 mEq/m²/die

- K : $20-40 \text{ mEq/m}^2/\text{die}$

SOLUZIONE TRADIZIONALE DI 'MANTENIMENTO' (b. sano)

H ₂ O	100 ml 1 L			
Na	2-3 mEq	20-30 mEq		
K	1,5-2 mEq	15-20 mEq		
Cl 3-5 mEq 30-50 m		30-50 mEq		
Glucosio 5 g = 20 Kcal 50 g = 200		50 g = 200 Kcal		

- ① garantire adeguato apporto idrico
- ② garantire apporto elettrolitico
- 3 prevenire il catabolismo tissutale e la conseguente chetosi fornendo almeno il 20% delle calorie quotidiane sotto forma di glucosio

DEFINIZIONE

Condizione di bilancio idrico negativo, associata o meno a disturbi elettrolitici

Classificazione più comune:

① disidratazione isotonica (isonatriemica)

② disidratazione ipotonica (iponatriemica)

3 disidratazione ipertonica (ipernatriemica)

DA RICORDARE

- ➤ Una perdita di peso > 1-2% in 24 ore è da imputarsi a disidratazione
- ➤ I segni clinici della disidratazione si manifestano quando il bilancio negativo eccede del 5% il peso corporeo
- La maggior parte dei segni clinici di disidratazione è legata alla perdita dei liquidi <u>extracellulari</u> (per lo stesso grado di disidratazione segni clinici più gravi nella disidratazione iponatriemica, meno gravi in quella ipernatriemica)

CAUSE PIU' COMUNI DI DISIDRATAZIONE

Da aumentata perdita

Gastrointestinale

Diarrea acuta

Vomito

Fistola enterocutanea

Renale

Diuresi osmotica

Uso di diuretici

Insufficienza surrenalica

Insufficienza renale cronica

Diuresi postotruttiva

Diabete insipido centrale o

nefrogenico

Cute e apparato respiratorio

esposizione al calore

sudorazione profusa

ustioni

malattie cutanee infiammatorie

Da ridotto apporto

digiuno

anoressia

restrizione di fluidi

ELECTROLYTE COMPOSITION OF VARIOUS BODY FLUIDS				
Fluid	Na ⁺ (mEq/L)	K+ (mEq/L)	Cl⁻ (mEq/L)	
Gastric	20-80	5-20	100-150	
Pancreatic	120-140	5-15	90-120	
Small bowel	100-140	5-15	90-130	
Bile	120-140	5-15	80-120	
lleostomy	45-135	3-15	20-115	
Diarrhea	10-90	10-80	10-110	
Burns*	140	5	110	
Sweat				
Normal	10-30	3-10	10-35	
Cystic fibrosis	50-130	5-25	50-110	

From Beharman RE, Kliegman RM, Arvin AM. Nelson Textbook of pediatrics, 16th ed. Philadelphia: WB Saunders: 2000

^{* 3-5} g/dL of protein ma be lost in fluid from burn wounds.

Al deficit di H₂O si associa pressoché costantemente un deficit elettrolitico che varia in funzione del tipo di perdite

QUESITI NELLA PRATICA CLINICA

- ① Qual è la causa della disidratazione?→Anamesi
- Quale la sua entità?
- ③ Vi può essere un disturbo elettrolitico o dell' equilibrio acido/base o della funzionalità renale?
- 4 Come va intrapresa la reidratazione?
 - orale vs parenterale
 - tipo di soluzione/velocità

VALUTAZIONE DEL DEFICIT IDRICO

Il metodo più preciso per stabilire il deficit di fluidi è basato sul confronto tra il peso attuale e quello precedente la malattia, calcolato come segue

% disidratazione = Peso premalattia – peso attuale
Peso premalattia

Se questo non è disponibile o non è attendibile si utilizza l'osservazione clinica

GRAVITA' CLINICA

Segni	Dis. Lieve	Dis. Moderata	Dis. grave
<u>Condizioni</u> generali	Assetato, vigile, agitato	Assetato, agitato o letargico o sonnolento	Sonnolento, debole, freddo, sudato, estremità cianotiche; può essere comatoso
Respirazione FR	Normale	Può esserci tachipnea	Tachipnea
<u>Polso</u>	Normale	Normale, tachicardico, debole	Rapido. Flebile, a volte impalpabile
<u>Cute</u>	Normale	Fredda	Fredda, marezzata, acrocianosi
Fontanella anteriore	Normale	Depressa	Molto depressa
Elasticità cutanea	Normale	Diminuita	Pieghe cutanee sollevate per più di 2
<u>Occhi</u>	Normali	Alonati	Marcatamente alonati
Mucosa orale	Umida	Secca	Molto secca
<u>Lacrime</u>	Presenti	Assenti	Assenti
Tempo di circolo	2''	Aumentato	Aumentato
<u>Diuresi</u>	Diminuita	Marcatamente diminuita	Anuria

CLASSIFICAZIONE DI GRAVITA'

	Lattante	Bambino
115)/5	<5%	<3%
LIEVE	(<50 ml/kg)	(<30 ml/kg)
AAODEDATA	5-10%	3-6%
MODERATA	(50-100 ml/kg)	(30-60 ml/kg)
CDAVE	>10%	>6%
GRAVE	(>100 ml/kg)	(>60 ml/kg)

Quando sospettare un disturbo

- elettrolitico
- dell' equilibrio acido/base
- della funzionalità renale

- ① Disidratazione moderata/grave
- Quadro clinico non chiaro
- 3 Età < 3 mesi o peso corporeo < 4,5 kg
- **4** Perdite imponenti

QUALI ESAMI

PER STUDIARE

- **▶**L' equilibrio idroelettrolitico
- **≻**La funzionalità renale
- **≻**Le cause

QUALI ESAMI?

- **≻** Elettroliti
- Osmolarità plasmatica
- **≻**Glicemia
- **≻**Emogasanalisi
- Urine per: PS, osmolarità ,elettroliti,
- **≻**Azotemia
- **≻**Creatinina

- **>** <u>+</u> Emocromo ed indici di flogosi
- **≻**<u>+</u> Colture
- <u>+</u>

LA TERAPIA REIDRATANTE

- **➢ ORALE**
- **PARENTERALE**

INDICAZIONI ALL' IDRATAZIONE PARENTERALE

- Disidratazione grave e/o shock
- Diarrea grave: scariche > 10 ml/kg/h
- Bambino di peso < 4,5 kg o di età < 3 mesi
- Incapacità di garantire un'adeguata idratazione orale (vomito incoercibile, compromissione neurologica, letargia, coma, scarsa compliance della famiglia, ileo intestinale)
- Idratazione orale inefficace: calo ponderale continuo
- Diselettrolitemia

TERAPIA REIDRATANTE PER VIA PARENTERALE

Vanno distinte 3 fasi:

1° FASE RAPIDO RIPRISTINO DEL VOLUME CIRCOLANTE

2° FASE RECUPERO DELLE PERDITE E IDRATAZIONE DI MANTENIMENTO

3° FASE RITORNO AL FABBISOGNO DI MANTENIMENTO

1° FASE RAPIDO RIPRISTINO DEL VOLUME CIRCOLANTE

Va eseguita solo nei bambini con

- disidratazione grave
- segni di compromissione di circolo

Soluzioni da utilizzare (sempre)

SOLUZIONE FISOLOGICA RINGER LATTATO

10-20 ml/kg in 20-30' ripetibili per 2 volte se non risposta clinica

	Soluzione fisiologica	Ringer lactato
Na (mEq/lt)	154	132
Cl (mEq/lt)	154	132
K (mEq/lt)	-	5
Ca (mEq/lt)	-	4
Lattato (mEq/lt)	-	29

NB: Se il circolo non è compromesso iniziare un' idratazione più lenta con: soluzione fisiologica 5-10 ml/kg in 1 ora in attesa degli esami di laboratorio

2 ° FASE RECUPERO DELE PERDITE ED IDRATAZIONE DI MANTENIMENTO

- Calcolo del fabbisogno di mantenimento per H₂O e per elettroliti
- -Calcolo del deficit di H₂O e di elettroliti
- -Valutazione delle perdite "in corso" di H₂O e di elettroliti tenendo conto del tipo di perdite

TEMPI DI RECUPERO DEL DEFICIT

DISIDRATAZIONE ISO-IPONATRIEMICA: 24 ore

- ½ nelle prime 8 ore
- -½ nelle successive 16 ore

DISIDRATAZIONE IPENATRIEMICA: 48-72 ore

per evitare bruschi cali dell'osmolarità conconseguente rischio di edema cerebrale (max calo Na: 0,5 mEq/gk/H)

CONTENUTO MEDIO DI Na NELLE SOLUZIONI

Nella reidratazione endovenosa in corso di gastroenterite acuta le soluzioni più raccomandate sono emifisiologica (Na 77 mEq/L), o addirittura fisiologica (Na 154 mEq/L) addizionate con Glucosio al 5%;

Il potassio va aggiunto non appena la diuresi è ripresa e/o vi è una documentata ipopotassiemia.

RICORDARSI ANCHE DELLE "PERDITE CHE CONTINUANO"!

(es. 1 scarica diarroica = \sim 10 ml/kg

~ 120 ml nel bambino grande)

3° FASE RITORNO AL MANTENIMENTO

Quando?

- ➤ Ripresa dello stato di idratazione
- ➤ Risoluzione delle perdite
- ➤ Ripresa della diuresi

TERAPIA REIDRATANTE ORALE

E' la modalità di reidratazione <u>elettiva nella gastro-enterite con</u> <u>disidratazione lieve o moderata</u>

Usualmente un bambino disidratato ha sete e accetta le soluzioni. In caso contrario, prima di passare all'idratazione parenterale, valutare se somministrare le soluzioni attraverso sondino nasogastrico.

Soluzione reidratante orale (ORS) da utilizzare per il recupero delle perdite: raccomandata dalle linee guida dell' ESPGHAN è una soluzione gluco-salina ipoosmolare (Osmolarità 200-250 mmos/L) con la seguente composizione:

- Na 60 mmol/L
- K 20 mmol/L
- Cl ≥ 25 mmo/L
- glucosio 74-111 mmol/L
- bicarbonati 10 mmol/L

Oral versus intravenous rehydration for treating dehydration due to gastroenteritis in children (Review)

Hartling L, Bellemare S, Wiebe N, Russell K, Klassen TP, Craig W

- 17 RCT
- 1811 patients involved comparing IV with ORS administered by mouth or using a nasogastric tube

ORS vs IVT

No significant differences in:

- Weight gain
- Incidence of hyponatremia
- Incidence of hypernatremia
- Duration of diarrhea
- Total fluid intake at 6 and 24 hours

ORS vs IVT

- More treatment failures with ORS (NNT 25: every 25 children with ORS 1 would fail and required IVT)
- Shorter hospital stay with ORS
- Phlebitis more frequent with IVT (NNH 50)

LESS MEASURABLE FACTORS THAT SUPPORT THE USE OF ORT

- ORT can be performed by almost everyone with very little training
- a child's thirst can moderate the quantity and rate of fluid administation
- ORT is less costly
- ORT results in less time spent in the ED

WHICH SOLUTIONS?

ESPGHAN solution:

- Na 60 mmol/L
- K 20 mmol/L
- Gluc 74-111 mmol/L
- Base (citrate) 10 mmol/L

Dehydration should be corrected in 4 to 6 hours:

- 30-50 ml/kg ORT for mild dehydration
- 60-90 ml/kg ORT for moderate dehydration
- 10 ml/kg for each stool (ongoing losses)

Approximate electrolyte composition of commonly consumed fluids (not recommended for ORT)*

	g/dL	Na ⁺ (mEq/ L)	K+ (mEq/L)	Cl ⁻ (mEq/L)	HCO ₃ - (mEq/L)	mOsm/kg H ₂ O
Apple juice	11.9	0.4	26	-	·	700
Coca-cola	10.9	4.3	0.1	-	13.4	656
Gatorade	5.9	21	2.5	17	·	377
Ginger ale	9	3.5	0.1	-	3.6	565
Milk	4.9	22	36	28	30	260
Orange juice	10.4	0.2	49	-	50	654

From Beharman RE, Kliegman RM, Arvin AM. Nelson Textbook of pediatrics, 16th ed. Philadelphia:

WB Saunders: 2000

CHO, carbohydrate

* Value vary slightly depending on source

MESSAGI CHIAVE

- ➤ L'elevato fabbisogno idrico in rapporto la peso corporeo pone il bambino a maggior rischio di disidratazione
- ➤ Gli stati di disidratazione variano in termini di entità e di effetto sulla funzionalità degli organi (rene, cuore, SNC); sempre comunque la perdita d'acqua si associa ad una per di elettroliti
- > la terapia reidratante orale è da preferire quando tollerata.