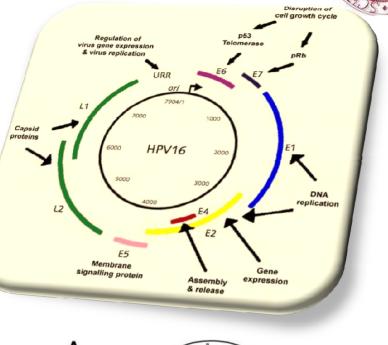
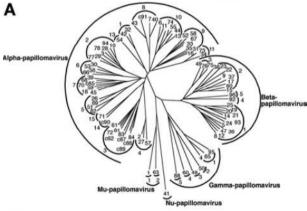


Università degli Studi di Padova Dipartimento di Scienze Ginecologiche e della Riproduzione Umana Scuola di Specializzazione in Ginecologia e Ostetricia Direttore Prof. Giovanni Battista Nardelli

HPV-DNA sperm infection and infertility: Systematic review.

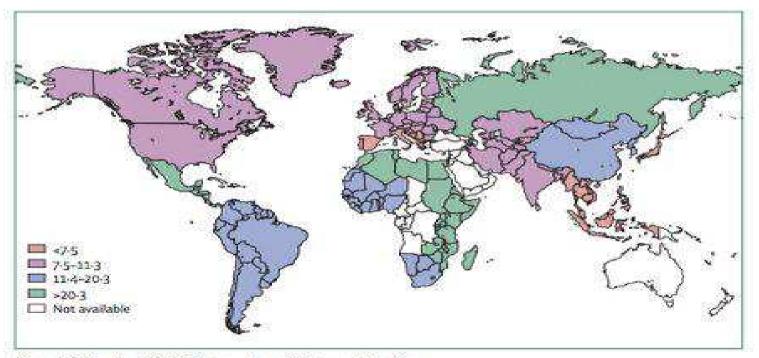

Dott. Marco Noventa

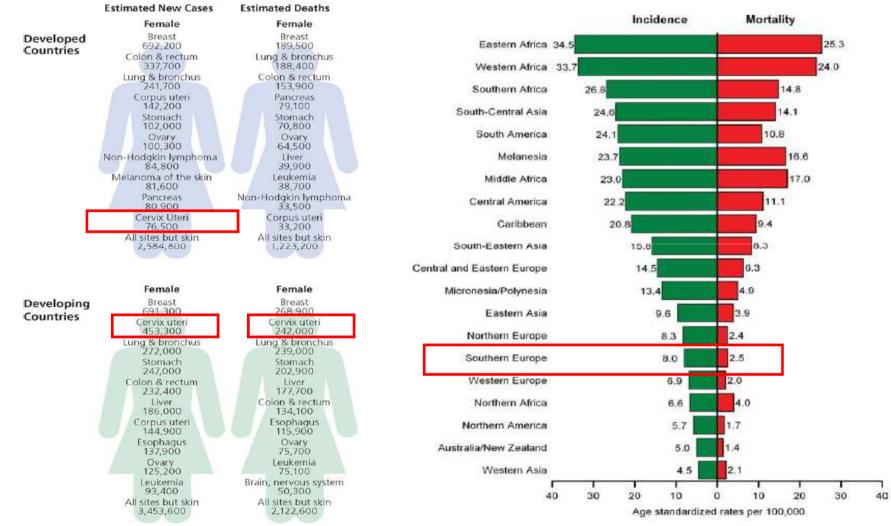


HPV molecular biology

Genus + Species	Type Species	SCC Cervix	Adeno Cervix	Category
Alpha 1	HPV32			low risk
	HPV42			low risk
Alpha 2	HPV3			cutaneous
	HPV10			cutaneous
	HPV28			cutaneous
	HPV29			cutaneous
	HPV77			cutaneous
	HPV78			cutaneous
	HPV94			cutaneous
Alpha 3	HPV61			low risk
	C62			Investigate
	HPV72			low risk
	HPV81	0.04%		low risk
	HPV83	0.04%		low risk
	HPV84 C86			low risk
	085			
	C87			
Alpha 4	C89 HPV2			cutaneous
Alpha 4	HPV2 HPV27			cutaneous
	HPV57			cutaneous
Alpha 5	HPV26	0.000/		high risk
Alpha 5	HPV51	0.22% 0.75%	0.54%	high risk
	HPV69	0.73%	0.3470	ngrinak
	HPV82	0.26%		high risk
Alpha 6	HPV30	0.2070		ingritian
Alpha o	HPV53	0.04%		high risk
	HPV56	0.04%		high risk
	HPV66	0.19%		high risk
Alpha 7	HPV18	0.19% 11.27%	37.30%	high risk
	HPV45	5.21%	5.95%	high risk
	HPV59	5.21% 1.05%	2.16%	high risk
	HPV39	0.82%	0.54%	high risk
	HPV68	0.82%		high risk
	HPV70			
	C85	1	1	
Alpha 8	HPV7			cutaneous (mucosa
	HPV40			cutaneous (mucos
	HPV43			cutaneous (mucos
	C91	Second and the second second	and the second	
Alpha 9	HPV16 HPV31	54.38% 3.82%	41.62%	high risk
	HPV31	3.82%	1.08%	high risk
	HPV33	2.06%	0.54%	high risk
	HPV35 HPV52	1.27%	1.08%	high risk
	HPV52	2.25%		high risk
	HPV58	1.72%	0.54%	hiğh risk
Alaba 10	HPV67 HPV6	0.0704		lever sints
Alpha 10	HPV6	0.07%		low risk low risk
	HPV11	0.07%		
	HPV13 HPV44			low risk
	HPV44 HPV55	0.04%		low risk
	HPV55 HPV74	0.04%		IOW HISK
Aloba 11	HPV34			high risk
Alpha 11	HPV34 HPV73	0.400/		high risk
Alpha 12	11-110	0.49%		ingrittan
Alpha 13	HPV54			low risk
Alpha 14	C90			low risk
Alpha 15	HPV71			low risk

HPV prevalence

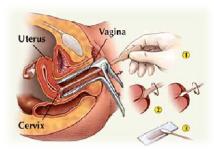



Figure 1: Estimated HPV DNA prevalence in the world regions Estimates are based on a meta-analysis of 78 studies including 157 879 women with normal cytology. Colours represent the adjusted prevalence in the region and denote the quartile distribution of all the estimates.

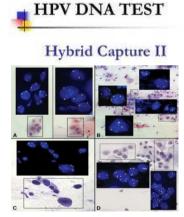
Worldwide prevalence : 40% (male and female)

HPV and Cervix neoplasia

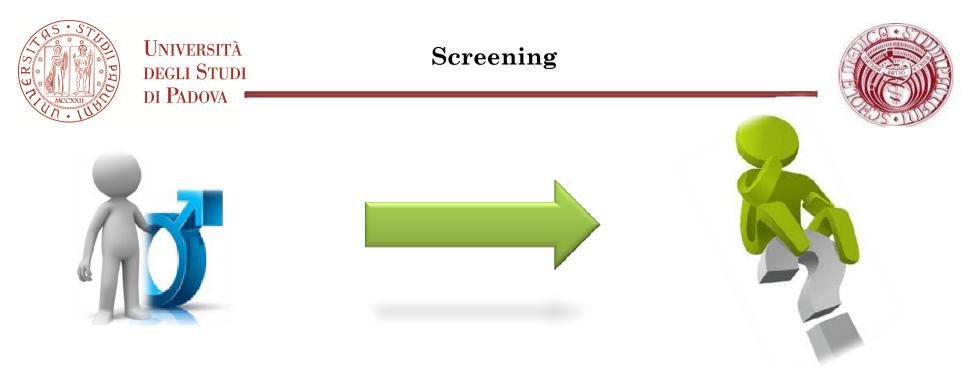
Screening



Prevention



I Livello


And and a second a

II Livello

Raccomandazioni per la qualità nella diagnosi, terapia e follow up delle lesioni cervicali, nell'ambito dei programmi di screening. GISCI 2010 Società italiana di Colposcopia e Patologia Cervico Vaginale: Gestione delle pazienti con Pap-test anormale.Anno XXI-N° 1 Dicembre 2006

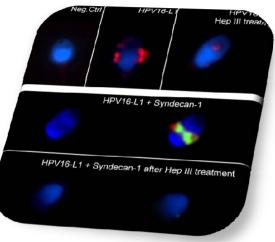
Relation to ano-genital warts and different type of neoplasia (cancers of penis, anal canal, oral cavity, head and neck)

Prevalence of HPV in male: 1.3-72.9% (higher than that in females)

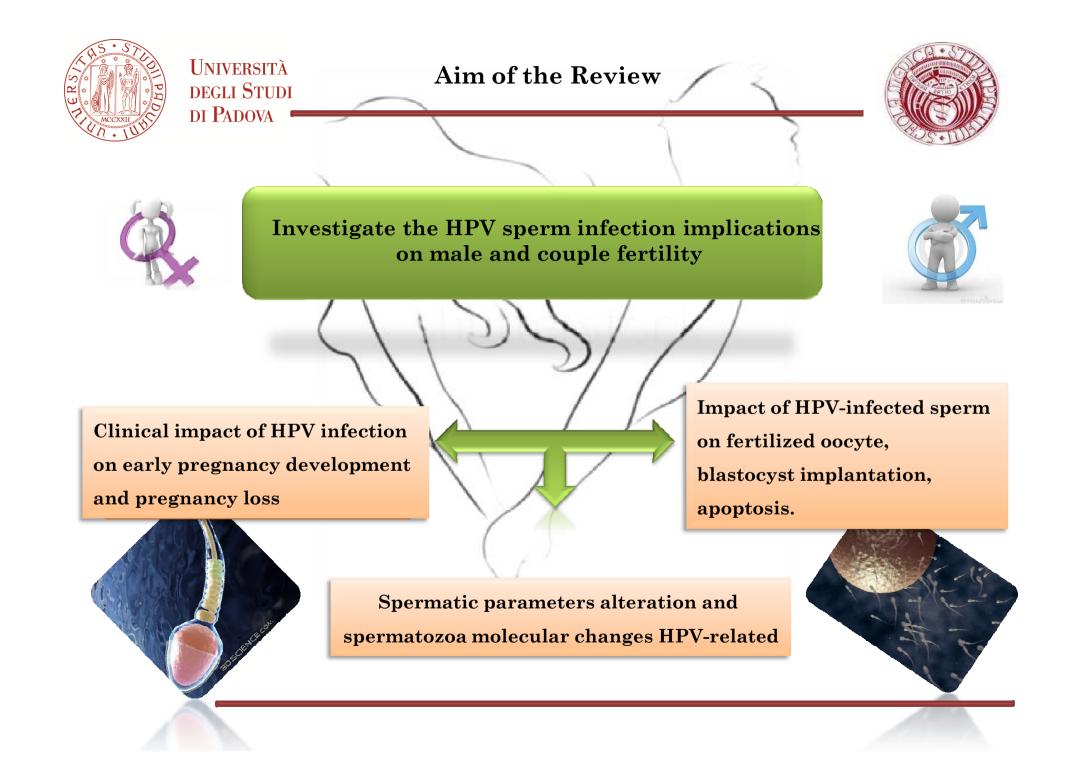
It does not tend to decline with age

Relation to Infertility in some cases?

Lenzi et al. BMC Public Health 2013, 13:117 http://www.biomedcentral.com/1471-2458/13/117	BMC Public Health
CORRESPONDENCE	Open Access
Rome consensus conference - statement papilloma virus diseases in males	; human
Andrea Lenzi ^{1*} , Vincenzo Mirone ² , Vincenzo Gentile ³ , Riccardo Bartoletti ⁴ , Vincenzo Ficarra ⁵ , C Luciano Mariani ⁷ , Sandra Mazzoli ⁸ , Saverio G Parisi ⁹ , Antonio Perino ¹⁰ , Mauro Picardo ¹¹ and C	

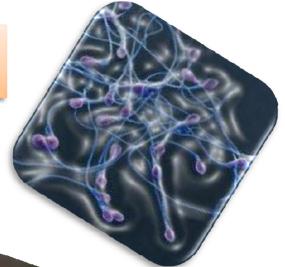

Nielson CM et al. Human papillomavirus prevalence and type distribution in male anogenital sites and semen. Cancer Epidemiol Biomarkers Prev. 2007 Giuliano AR et al. Age-specific prevalence, incidence, and duration of human papillomavirus infections in a cohort of 290 US men. J Infect Dis. 2008 Garolla et al. Human papillomavirus sperm infection and assisted reproduction: a dangerous hazard with a possible safe solution. Hum Reprod. 2012

HPV Sperm Infection


- Prevalence highly variable from 3% to 65% (18-40 years)
- HPV binds two distinct site along the equator of the sperm head (Sydecan-1)
- Related to spermatic parameters modification?
 - sperm motility reduction
 - pH alterations
 - spermatozoa DNA fragmentation.
- HPV-infected sperm is able to fertilize oocyte transferring the viral genome?
- Infected oocytes interfere with implantation and pregnancy development?

Pérez-Andino J. Adsorption of human papillomavirus 16 to live human sperm. PLoS One. 2009 Jun

Foresta C. Human papillomavirus found in sperm head of young adult males affects the progressive motility. Fertil Steril. 2010



Aim of the Review

Feasibility and clinical efficacy of all the available options to detect and treat HPV-infected sperm.

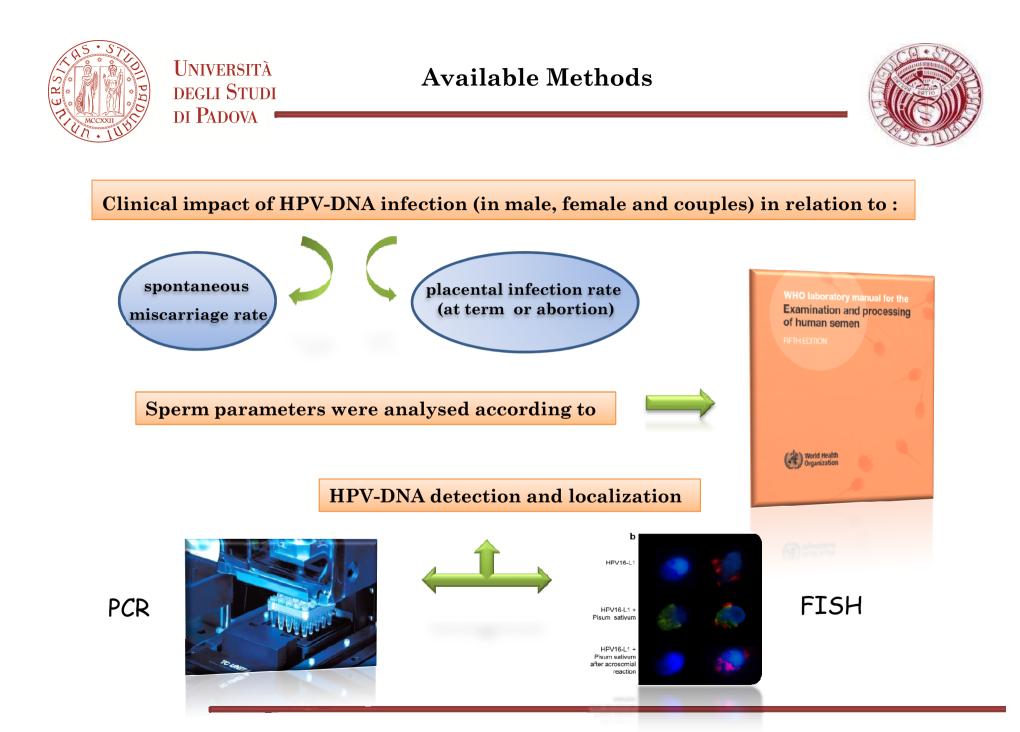
Finally we evaluated the implication of all these data in relation to sperm banking and ART cycle.

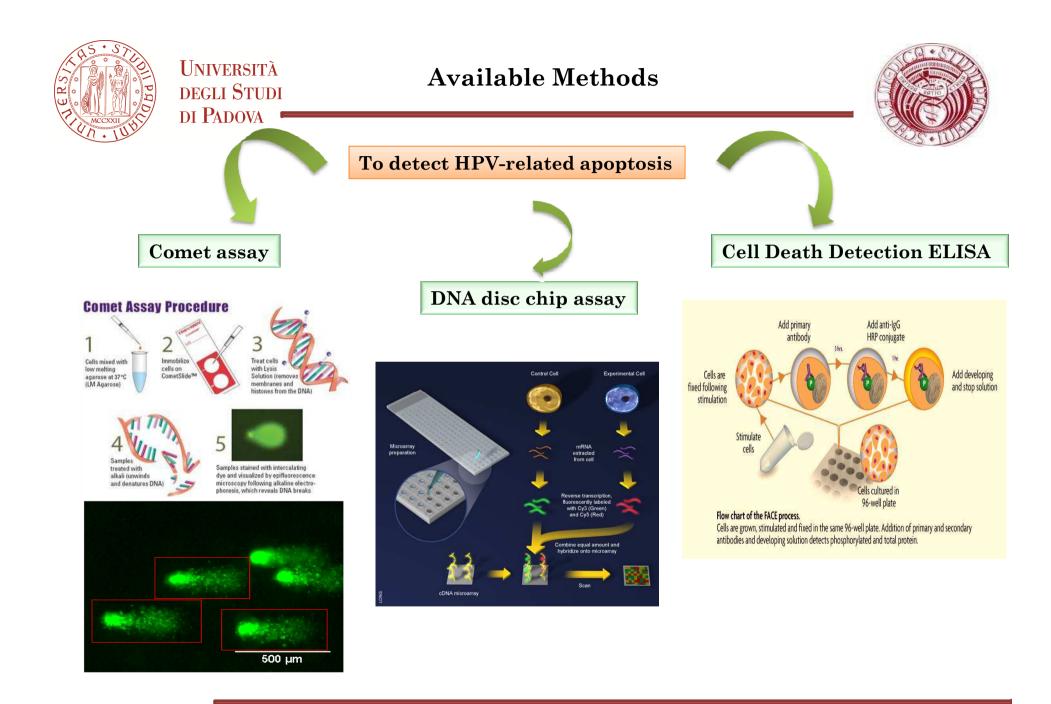
Interval time from 1994 to 2013

> Key search terms:

Outcomes

- HPV sperm infection
- Male infertility and HPV
- Sperm parameters and HPV
- HPV infected sperm and fertilization


Data Sources


- HPV and fertility outcome
- HPV and sperm/blastocyst apoptosis

- Clinical impact of HPV infection and fertility outcomes
- HPV-related spermatic modifications and their impact on fertility
- Ability of infected semen to vehicle exogenous HPV-DNA and its impact on pregnancy evolution

Results

Clinical impact of HPV infection and fertility outcomes

5 manuscript focused on this topic

Authors (Year)	N° of samples	Spontaneus aborted products: HPV +/HPV-	Electively aborted products: HPV +/HPV-	Incidence of miscarriages in pregnant exposure to Gardasil	Samples of placentas at term: HPV +/HPV-	Incidence of miscarriages in couple with male partner: HPV +/HPV-	Incidence of miscarriages in couple with female partner: HPV +/HPV-	Incidence of miscarriages in couple with both partner: HPV +/HPV-
Hermonat et al. (1997)	40	60%/40%	20%/80%					
Matovina et al. (2004)	108	7,4%/92,6%						
Dana et al. (2009)	517			6,9%				
Skoczynski et al. (2011)	129	17.7%/82,3 %			24,4%/75,6%			
Perino et al. (2011)	199 (couple)				\langle	66,7%/15%	40%/13%	100%/15,9%

Matovina M et al Fertil Steril. 2004 Mar Hermonat PL,et al. Virus Genes 1997. Dana A et al Obstet Gynecol. 2009

Skoczyński et al. Acta Obstet Gynecol Scand. 2011

Results

TABLE 1

Frequency of miscarriage by sociobehavioral and clinical characteristics: univariate and multivariate analyses.

	No. of pregnancies	No. of m	iscarriages			
Characteristic	(total = 66)	n	%	OR (95% CI)	Adjusted OR (95% Cl	
Age of men (y)						
≤38*	54	8 5	14.8	1.00	1.00	
>38	12	5	41.7	4.11 (0.80-19.5)	5.36(1.20-24.0)	
Age of women (y)				Sector and Sector and	a sector de la sector de la sector	
≤35ª	41	6	14.6	1.00		
>35	25	6 7	28.0	2.27 (0.55-9.42)		
No. of oocytes				Sector Property and		
≥3*	23	4	17.4	1.00		
<3	43	4 9	20.9	1.26 (0.30-6.33)		
Cause of infertility ^b						
Unexplained	10	1	10.0	1.00		
Female	15	0	0	22.7 (3.46-149.3)		
Main	38	0 a	21.1	2.40 (0.26-21.80)		
Couple	3	0	0	0.90 (0.03-27.86)		
HPV + male						
No	60	9	15.0	1.00	1 00	
Yes	6	4	66.7	11.33 (1.32-134.9)	14.72 (211-102.7)	
HPV + MITTER						
No	51	7	13.7	1.00		
Yes	15	6	40.0	4.20 (0.91-18.50)		
HPV + couples	1222	32363	14.0	Storan		
No	63	10	15.9	1.00		
Yes	3	3	100.0	35.8 (1.7-742.8)		

Human papillomavirus infection in couples undergoing in vitro fertilization procedures: impact on reproductive outcomes

A prospective study was performed to assess the relationship between human papillomavirus (HPV) infection in 199 infertite couples and outcome of assisted reproductive technologies (ARTs). A highly statistically significant correlation between pregnancy loss rate (proportion of pregnancies detected by abACG that did not progress beyond 20 weeks) and positive HPV DNA testing in the male partner of infertile couples, compared with HPV negatives, was observed (66.7% vs. 15%). (Ferül Steri)¹⁹ 2011;95:1845–8. ©2011 by American Society for Reproductive Medicine.)

Key Words: Abortion, ART, HPV infection, infertility, pregnancy loss

Note: OR - odds ratio; CI - confidence interval.

increase in the risk of pregnancy loss when HPV infection was diagnosed in sperm cells of the male partner. When both partners resulted infected, the miscarriage rate detected was 100%

Perino A et al Fertil Steril. 2011

The presence of HPV in semen sample can be associated with an impairm

Università degli Studi di Padova

HPV-related spermatic modifications and their impact on fertility.

Results

AUTHORS (YEAR)	TYPE OF STUDY	PATIENTS	TOTAL MOTILITY (%)	PROGRESSIV E MOTILITY %	AMPLITUDE LATERAL HEAD (MM)	PERCEN TAGE HYPERA CTIVE (%)	STRAIGH T-LINE VELOCIT Y (MM/SEC)	CURVILI NEAR VELOCIT Y (M/S)	AVERAGE PATH VELOCITY (MM/SEC)	LINEARIT Y (%)
		control subjects	74.0±0.6	17.3 ± 0.2	3.0 ± 0.0	2.3 ± 0.1		58.4 ± 0.2		
		Patients HPV-DNA 16	38.4±1.1	6.0 ± 0.2	1.3±0.1	1.4 ± 0.1		40.1 ± 0.7		
		Patients HPV-DNA 18	56.1± 0.5	9.1 ± 0.2	2.9±0.0	2.3 ± 0.1		53.0 ± 0.2		
Lee et al (2002)	case control study	Patients HPV-DNA 6/11	47.1±0.5	7.0 ± 0.2	2.1 ± 0.0	3.3 ± 0.1		51.4 ± 0.4		
· · /		Patients HPV-DNA 31	53.4±0.6	8.6±0.1	2.7 ± 0.0	2.4 ± 0.1		52.0 ± 0.4		
		Patients HPV-DNA 33	46.0±1.3	10.8 ± 0.4	3.0±0.0	2.9 ± 0.1		47.3 ± 1.3		
		controls DQA1	47.0 ± 0.6	0.5±0.1	2.7 ± 0.0	4.3 ± 0.3		49.6 ± 1.0		
	case control study	L1 HPV DNA	51.5 ± 0.15	15.5 ± 0.11	1.9±0	0.5 ± 0.02	23.5 ± 0.02	43.5 ± 0.02	34.0±0.04	57.0±0.04
		Control sperm washed	75.0 ± 0.45	19.0±0.04	3.1±0	4.0 ± 0.09	24.5 ± 0.07	57.5 ± 0.02	41.0±0	44.5 ± 0.11
Brossfield et al (1999)		Transfected centrifuge- washed	90.0±0	38.5 ± 0.61	4.1 ± 0.03	8.0±0.38	31.5 ± 0.2	73.5 ± 0.05	47.5 ± 0.05	44.5 ± 0.14
		Transfected Isolate- washed	93.0±0.10	33.5 ± 0.05	3.6±0.12	1.0 ± 0.10	26.0±0.10	56.5 ± 0.25	37.5 ± 0.25	47.0±0
		Transfected, TYB- washed	94.0 ± 0.40	37.0±0.70	3.7±0.01	4.0 ± 0	26.0±0.10	58.5 ± 0.05	36.0±0.20	46.5 ± 0.35
		Patients HPV-DNA 16	48.0 ± 0.2	5.5 ± 0.2	1.8±0	1.0 ± 0.1		38.5 ± 0.3	28.0 ± 0.1	56.0±0.2
		Patients HPV-DNA 18	47.5 ± 0.1	11.0±0.2	2.7±0	1.0 ± 0.1		55.5 ± 0.7	36.0±0.5	47.5 ± 0.2
Connelly et al	case control	Patients HPV-DNA 6b/11	36.5 ± 0.1	6.5 ± 0.1	1.8±0	0 ± 0		31.5 ± 0.1	23.0±0	57.0±0.2
(2001)	study	Patients HPV-DNA 31	55.0±0.5	14.5 ± 0.1	2.8 ± 0.1	2.0 ± 0		45.5 ± 0.3	30.5 ± 0.1	52.5 ± 0.5
		Patients HPV-DNA 33	48.5 ± 0.7	13.0±0.3	2.7±0	0 ± 0		42.5 ± 0.4	28.5 ± 0.3	52.5 ± 0.2
		Patients DQA1	37.5 ± 0.2	11.0 ± 0.4	3.1±0	2.0 ± 0		47.5 ± 0.2	31.5 ± 0.1	49.0±0.4

9 eligible studies aimed on this field

Results

• Lee et al ٠ HPV-DNA [except genotype 33], ٠ Differential Effects of Human Papillomavirus DNA Types on p53 Tumor-Suppressor Gene Apoptosis in Sperm Cathy A. Lee, M.D.,* Christopher T. F. Huang, M.D.,* Alan King, M.D.,* and Philip J. Chan, Ph.D., H.C.L.D.++¹ to HPV-DNA type 16 and lr-HPV-DNA. *Department of Gynecology and Obstatrics and †Department of Physiology and Pharmacology, Lana Linda University School of Medicine Lana Linda, California 92310 **Brossfield** et al incubation. slight increase in motility Connelly et al Human sperm deoxyribonucleic acid fragmentation ANDROLOGY types of papillomavirus Tenacity of Exogenous Human Papillomavirus DNA in ane A. Connelly, MD, Philip J. Chan, PhD, HCLD, William C. Patton, MD, and Alan King, MD JERALYN E. BROSSFIELD,¹ PHILIP J. CHAN,^{1,2,3} WILLIAM C. PATTON,¹ and ALAN KING¹

- Sperm motility was reduced in the presence of hrHPV-DNA E6–E7 fragments,
- the percentages of progressive motility were lower in sperm exposed to the all
- the amplitude of lateral head displacement was decreased after exposure

- Observation was made after two hours of
- This data suggests that HPV-DNA required an adequate interval time to determine molecular changes in regulation of sperm motility apparatus.

Sperm Washing

Brossfield et al. J Assist Reprod Genet. 1999

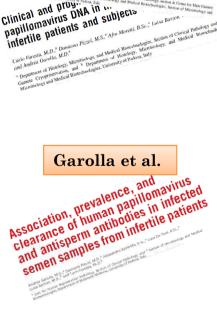
Results

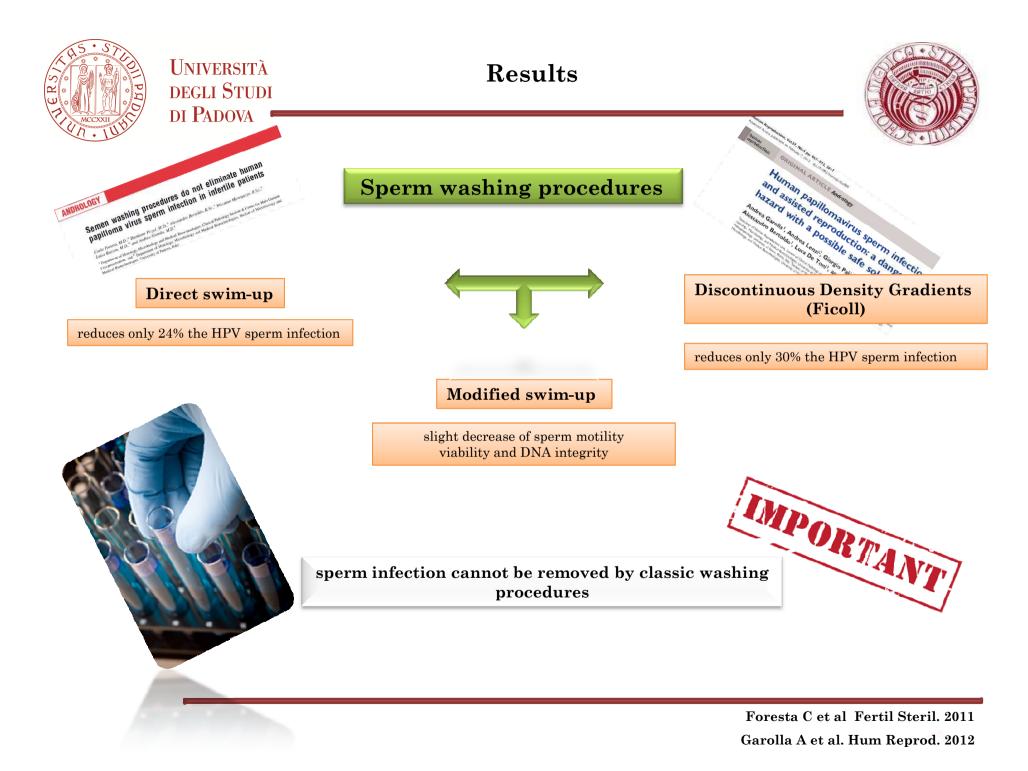
Autors (year)	Study type	Patients	Sperm Concentra tion (10^6/ml)	Semen Volume (ml)	Total sperm count (10^6)	рН	Progressive motility %	Normal norpholgy %	Viabilit y%
	Cross-	Infertile HPV-infected patients n=61	32.0 ±11.2		94.2 ± 36.5	/	29.0±11.4	18.8 ± 6.2	80.0 ± 7.1
Garolla et al. (2013)	sectional	Infertile non-infected patients n=104	34.6 ± 9.8		108.8 ± 44.5		47.8 ± 11.0	18.5 ± 4.3	83.2 ± 5.1
	cimical	Control subjects n=92	51.3 ± 8.4		156.0 ± 42.9		53.4 ± 11.4	21.3 ± 4.7	83.6 ± 5.1
Garolla		HPV-infected patients n =22	29.0 ± 10.3	3.1± 0.9	87.7 ± 36.3	7.6 ± 0.2	29.6 ± 14.2	19 <mark>.</mark> 0 ± 6.3	81.3+6.3
et al. (2012)	Case- control	Control subject n =13	30.5 ± 9.8	3.3± 1.0	98.8 ± 46.7	7.5 ± 6.3	42.4 ± 22.7	21. <u>±</u> 7.5	83.8+8.3
et al. (2012)		L1-incubated sperm (pool)					22.6 ± 8.7	20.1 ± 6.5	82.8+8.7
	Cross- sectional clinical	sexually active subjects HPV(+) n=10	57.5 ± 30.4	2.9 ± 1.6	174.3 ± 115.8	7.7 ± 0.3	37.7 ± 16.8	31.5±8	83.5 ± 7.9
Foresta et al. (2010 a)		sexually active subjects HPV(-) n=90	60.2 ± 31.0	2.4 ± 1.6	175.8 ± 154.5	7.6 ± 0.2	53.7 ± 18.2	33.1 : 11.1	84.6 ± 8.6
		virgin subjects n=100	58.3 ± 29.1	2.7 ± 1.5	174.5 ± 164.7	7.6 ± 0.3	53.7 ± 19.0	32.8 :: 10.6	83.6 ± 7.6
Foresta et al. (2011 c)	Cross- sectional clinical	infected infertile patients n=32	32.4 ± 21.1	3.0 ± 1.1	100.2 ± 73.4	7.6 ± 0.3	29.7±13.8	17.8 ± 9.1	78.3 ± 11.6
		Patients with genital warts HPV (+) n=14	53.5 ± 30.0	2.6 ± 1.7	167.6 ± 111.7	7.7 ± 0.2	36.2 ± 18.7	32.6 : 10.7	80.2 ± 9.1
		Patients with genital warts HPV (-) n=12	56.2 ± 33.8	0.8 ± 1.8	177.1 ± 126.4	7.4 ± 0.3	56.2 ± 19.8	36.3 ± 14.4	81.3 ± 10.5
		subjects with HPV+ partner HPV(+) n=27	48.5 ± 23.0	2.8 ± 1.2	172.8 ± 110.2	7.6 ± 0.2	38.4 ± 13.2	31.8 ± 11.2	82.4 ± 8.8
Foresta et	Cross-	subjects with HPV+ partner HPV(-) n=39	50.1 ± 22.3	2.5 ± 1.3	178.4 ± 102.3	7.7 ± 0 4	53.8 ±16.5	31.; ± 11.2	82.4 ± 8.8
al. (2010 b)	sectional clinical	Infertile patients HPV (+) n=11	30.0 ± 21.5	2.9 ± 1.9	99.4 ± 88.8	7.7 ± 0.3	33.9 ± 15.9	32 9 ± 13.9	79.8 ± 8.6
		Infertile patients HPV (-) n=97	35.2 ± 23.0	3.0 ± 1.5	102.9 ± 100.9	7.6 ± 0.3	51.7 ± 16.2	33.1 ± 11.1	84.6 ± 10.7
		Fertile controls HPV (+) n=2	60.5 ± 31.5	2.5 ± 1.6	175.5 ± 131.6	7.6 ± 0.2	55.5 ± 17.6	33.5 ± 10.6	81.7 ± 9.4
		Fertile controls HPV (-) n=88	58.7 ± 30.8	2.6 ± 1.6	176.0 ± 139.6	7.7 ± 0.2	54.2 ± 17.9	33.0 ± 13.5	83.9 ± 8.0
Rintala	case control	High-risk HPV DNA (+) n=10		3.07		7.37	54,2		65,2
et al. (2004)	case control	High-risk HPV DNA(-) n=55		4.03		7.51	56,5		69,6

Rintala et al. Detection of high-risk HPV DNA in semen and its association with the quality of semen. Int J STD AIDS. 2004 Nov

Results

- Significant reduction of sperm motility in HPV-DNA infected men
- HPV-DNA was detected frequently in exfoliated cells [77.8–100%]
- Spermatozoa infection was found in 72% of infertile men
- All the remaining spermatic parameters resulted comparable between infected or not-infected patients


- Found a reduction of mean progressive motility in HPV-DNA positive sperm
- Infertile sperm men had ASAs (anti sperm antibodies) more frequently than fertile men
- HPV-DNA infected men with positive sperm-Mar test (ASAs presence) had at 24 months lower motility than negative ones.
- Many cases of reported idiopathic asthenozoospermia do not presented any risk factor except for the positivity to HPV-DNA genome


Foresta C et al Fertil Steril. 2011 Garolla et al. Fertil Steril. 2013 Jan Foresta C et al Fertil Steril. 2010 Feb Foresta C et al. Fertil Steril. 2010 Oct

Foresta et al

Semen washing procedures do not eliminate human papilloma virus sperm infection in infertile patients

cumicai anu prograda in in papillomavirus DNA in in Clinical and prov-

Results

Ability of infected semen to vehicle exogenous HPV-DNA and its impact on pregnancy evolution.

11 studies (all in-vitro) analyzed the ability of sperm to carry exogenous HPV-DNA infection into oocyte and embryos, the blastocyst expression of viral genome and its impact in terms of fertility, implantation and embryonic effects.

- Increased incidence of apoptosis (integrity of exon 5 and 8 of p53) in sperm cells exposed to E6/E7 region derived from the HPV-DNA types 16 and 18.(Connely et al. 2001 and Lee et al 2001)
- > HPV-DNA infected sperm is able to transfer HPV-DNA into blastocyst and at cells of the reproductive tract. (Chan et al 1996)
- In the Blastocysts the exogenous HPV-DNA is present both in the the inner cell mass and throphoblast cells. (Cabrera et al 1997)

Foresta et al

IPV16-L1 + Syndecar

HPV16-L1 + Syndecan-1 after Hep III trea

Calinisan et al

Università degli Studi di Padova

Results

HPV is localized at the equatorial region of sperm head (interaction L1 and Sydecan-1)

HPV infected sperm is able to transfer both the capsid protein L1 and E6/E7 viral genes to the oocyte with a subsequent gene expression by transfected blastocyst

Transfecting blastocysts with E6-E7 region of HPV genotype 16,18,31,33, observed the presence of DNA fragmentation only in subgroups of blastocysts infected by HPV-DNA type 16.

You et al

HPV-16 oncogenes genes may be responsible of Throbhoblast death.

(placenta alteration? is Spontaneous miscarriage?)

Foresta C et al PLoS One. 2011 Calinisan et al J Assist Reprod Genet. 2002

enetrated occyt

AS Wh	ST PRO	Università degli Studi di Padova	Results
	Henner	mberg et al	Demonstrated the differences of HPV-DNA growth inhibition effects related to the embryo-stage cells.
			> 25,9% less Blastocyst formed with HPV 16 exposure
			> 25.9-31.8% more degenerated embryos with HPV 16 exposure
			➤ The direct effect of growth inhibition was found only at 2-cell embryo- stage but not at the 4-8 cells one

The rates of apoptosis in HPV transfected trophoblast cell were 3-fold [2.4–3.7] and 5.8-fold [5.6–5.9] greater if compared with negative controls at 3 and 12 days.

Gomez et al

ALE RS1>

The invasion of transfected trophoblast cells progressively and significantly decreased from day 3 until 15 after transfection [25.2–57.6% lower than negative controls]

Results

Sperm is able to vehicle the viral genome in fertilized oocytes and blastocysts

HPV genomes are expressed in fertilized oocytes, blastocysts and trophoblast cells.

The viral genome could induce cell changes such as:

- zygote growth inhibition
- blastocyst formation decrease
- DNA fragmentation and apoptosis, resulting often lethal for early embryo development

HPV extravillous trophoblast infection induces cell death and may reduce placental invasion into the uterine wall.

HPV infection may cause placental dysfunction and could be associated with adverse pregnancy outcomes, (such as early pregnancy loss)

It is unknown whether these in vitro findings might apply to in-vivo.

Main Outcomes

Conclusion

Examination and processing

of human semen

World Health Organization

In infected semen samples, HPV can be localized at different levels: in sperm, in exfoliated cells or in both sites.

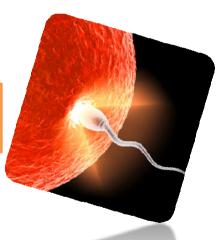
HPV was present on the surface of sperm cells, located at two distinct binding sites along the equatorial region of the sperm head (L1-Sydecan-1)

A significant reduction of mean sperm motility was found in those subjects with HPV infected semen

No difference in seminal volume, viscosity, pH count, viability, and normal

morphology in HPV-infected and non-infected semen samples.

Conclusion



Apoptosis

HPV, inducing an alteration of sperm motility, may play a major role in cases of idiopathic asthenozoospermia and thus in male infertility.

Oocytes penetrated by transfected sperm expressed the viral genes, suggesting an active transcription of viral genes by the infected oocyte

HPV-transfected blastocyst/trophoblast cells have an increased rate of apoptosis and a reduced placental invasion into the uterine wall compared with controls

UNIVERSITÀ

DEGLI STUDI DI PADOVA Conclusion

Concerning ART cycles

Significant persistence of infected sperm after sperm

washing procedures

HPV sperm infection cannot be removed by classic

washing procedures

HPV-DNA semen screening (PCR) can help to define the best timing [regression of semen infection] to start <u>ART cycles.</u> HPV male vaccination should be considered a possible strategy for the prevention of HPV semen impairment and improvement of couple fertility outcomes

Thanks for your attention

Title page

Update on HPV-DNA sperm infection role on rale and couple fertility:

molecular mechanism, clinical ou, ormes) & aurther implications.

Sy te na 'c review.

Salvatore Gizzo¹ M.D.; Marco Noventa¹ M.D.; Carlo Saccardi¹ M.D, PhD,

Tito Silvio Patrelli² M.D.; Michela Longone¹ M.D.; Anna Bertocco¹ M.D.; Lucia Vendemiati¹ M.D.;

Prof. Michele Gangemi¹ M.D Prof. Donato D'Antona¹ M.D & Prof Giovanni Battista Nardelli¹ M.D.

1 - Department of Woman and Child Health – University of Padua (ITALY)

2 - Department of Obstetrics, Gynecological and Neonatology Sciences- University of Parma (ITALY)

razie

Dipartimento di salute della Donna e del Bambino U.O.C di Ginecologia e Ostetricia – Direttore Prof. G. B. Nardelli