Osteomieliti

- Osteomyelitis is the inflammation of bone caused by pyogenic organisms.
- Major sources of infection:
 - haematogenous spread
 - tracking from adjacent foci of infection
 - direct inoculation from trauma or surgery
- Haematogenous spread is the most common source of infection in children, typically affecting the long bones

ACUTE: less then 2 weeks

SUBACUTE: 2 weeks-3 months

CRONIC: > 3 months

EPIDEMIOLOGY

- •Incidence: 1-13: 100.000
- •Boys : girls = 2 : 1
- •50% under 5 years old
- •In most cases solitary lesion (multifocal in neonates)

RISK FACTORS

50% → NO RISK FACTORS

- •Immunocompromised
- •Premature infants
- •Chronic illness

(es. Sickle cell disease, pulmonary or heart disease)

DIFFERENTIAL DIAGNOSES FOR ACUTE OSTEOMYELITIS

Vascular

Vaso-occlusive disease-for example, bone infarct secondary to sickle cell disease

Infection

Septic emboli

Chronic recurrent multiple osteomyelitis

Septic arthritis

Trauma

Stress fracture

Tumour

Osteoid osteoma

Acute lymphoblastic leukaemia

Eosinophilic granuloma

Metastatic neuroblastoma

Ewing's sarcoma

Osteosarcoma

DIAGNOSE

Insidious onset
Variable clinical presentation
Non specific clinical findings

No single test to confirm Osteomyelitis!

Careful hystory and clinical examination High index of suspicion Laboratory Imaging

CLINICAL EXAMINATION

Pain (81%)
Swelling and erythema (70%)
Fever (62%)
Reduce jonts movements or pseudoparalysis (50%)
Reduced weight bearing or Limp (49%)

Young child: •Irritability •Refuse to use a limb

Dartnell J, Haematogenous acute and subacute paediatric osteomyelitis: a sistematic review of literature. J Bone Joint Surg Br 2012

CLINICAL FEATURES TO LOOK FOR IN A CHILD WITH SUSPECTED OSTEOMYELITIS

History

- Listen to the child and observe his or her interaction with the parents (there could be other causes for pain or a limp²⁶)
- Ask about the site of pain (beware referred pain-children with hip disease often complain of knee pain instead)
- Ask about the duration of symptoms (fever for >7 days or localised symptoms for >10 days are suggestive of a complicated course)
- Ask about prodromal symptoms (for example, recent fever, cough, cold, diarrhoea)
- Ask about changes in behaviour (in a young child, subtle features such as irritability and being quieter than usual may be the only presenting sign)
- Ask about recent trauma (30% of patients have this as a feature)
- Ask about chronic illnesses (especially sickle cell disease or diabetes)

Examination

- Take the child's temperature (in 40% of cases, children may be afebrile)
- Observe the movement of all four limbs (pseudoparalysis may be the only feature in an infant)
- Observe the resting position of the child's limb—children may hold their hip in a flexed and externally rotated position, or the knee in a flexed position (fig 2¹)
- If the child is of walking age, look for a limp or reluctance to weight bear
- Look for swelling and erythema, which can be subtle (the femur and tibia are the most commonly affected sites)
- Look for open wounds
- Look for localised tenderness and restricted range of joint motion
- Examine the rest of the child, as osteomyelitis can be multifocal or present in unusual sites (see fig 1)

Most importantly, have a high index of suspicion, and, if in doubt, refer acutely to paediatrics, paediatric infectious disease, or paediatric orthopaedics

LABORATORY

•PCR and PCT sensitive as diagnostic test

•PCT > 0.4 ng/ml sensitive and specific marker for septic arthritis and osteomyelitis (Karthikeyan et al., J Orthop Surg and Research 2013; 8:19)

•Sensitivity highest when VES and PCR increased (98%)

•PCR useful for monitoring response to treatment (BMJ 2014; 348: 1-8)

•Microbiology \rightarrow BLOOD CULTURE positive only in 50% \rightarrow Bone or joint aspirates in 70%

CAUSATIVE AGENTS

All ages 5. Aureus (70-90%)

Neonates and young infants Group B Streptococcus Bacilli gram- (E.coli)

 \rightarrow Salmonella species in developing countries and among patients with sickle cell disease

→ Community acquired MRSA
 -increasing incidence
 -incidence up to 30%
 -more aggressive disease

Kingella kingae

- Gram- coccobacillus
- common pathogen respiratory tract
- increasing incidence (2° most common cause of osteomyelitis < 5 y)

95% K. Kingae osteomyelitis in children 6 months-3 years

- PPV 90% of PCR detection in pharynx
- more benign features BUT

CAUSATIVE PATHOGEN

Not identified

55% of cases

IMAGING

Radiographs: -acute skeletal changes not visible before 5-10 days BUT -exclude fractures or malignancy

Scintigrafy: -sensitive and useful (symptoms not localized!) BUT -extensive radiation exposure

Computed tomography (CT):

-excellent multiplanar images reconstructions -useful in chronic osteomyelitis (scleotic changes, abnormal thickening bone..) BUT

BUI

- -poor soft tissue contrast
- -high exposure radiation

MAGNETIC RESONANCE

- The best imaging method
- •High sensitivity (82-100%)
- •High specificity (75-99%)
- •Identifying location and extent of disease
- •More detailed evaluation adiacent structures (pyomyositis, joint effusion, subperiostal abscesses)
- •SAFE!

TREATMENT

•S. aureus methicillin-susceptible

Cefazolin (100 mg/kg/24 h every 8h) or **Nafcillin** (150-200 mg/kg/24 h every 6h)

Clindamycin (30-40 mg/kg/24 h every 8h) when rate Clindamycin Resistance S.aureus $\leq 10\%$

•MRSA infections Vancomycin (45 mg/kg/24 h every 8h OR 60 mg/kg/24 h every 6h)

•S. pneumoniae, A group Streptococcus, K. Kingae: Penicillin (Beta lactams)

•S. pneumoniae penicillin-resistant and Salmonella Cezotaxime or Ceftriaxone

•Patients with Sickle cell Disease Cefotaxime (150-225 mg/kg/24 h every 8h) AND Vancomycin (45 mg/kg/24 h every 8h) OR Clindamycin (40 mg/kg/24 h every 6h)

Table 1. Antibiotic Treatment for Acute Osteomyelitis in Children.*

Antibiotic	Dose	Maximal Daily Dose†	Bone Penetration:	Reference
	mg/kg/day		%	
Empirical treatment				
First-generation cephalosporin, if prevalence of MSSA in community >90%§	≥150 administered in 4 equal doses¶	2–4 g	6–7	Dose: Peltola et al., ⁹ Peltola et al. ²⁰ ; extent of bone penetration: Tetzlaff et al. ²¹
Antistaphylococcal penicillin (cloxa- cillin, flucloxacillin, dicloxacillin, nafcillin, or oxacillin), if prevalence of MSSA in community >90%	≤200 administered in 4 equal doses	8–12 g	15–17	Dose: Jagodzinski et al. ⁸ ; extent of bone penetration: Tetzlaff et al. ²¹
Clindamycin, if prevalence of MRSA in community ≥10% and prevalence of clindamycin- resistant <i>S. aureus</i> <10%	≥40 administered in 4 equal doses	Approximately 3 g	65–78	Prevalence of microorganisms: Liu et al. ¹⁴ ; dose: Peltola et al., ⁹ Liu et al., ¹⁴ Peltola et al. ²⁰ ; extent of bone penetration: Feigin et al. ²²
Vancomycin, if prevalence of MRSA in community ≥10% and prev- alence of clindamycin-resistant <i>S. aureus</i> ≥10%	≤40 administered in 4 equal doses	Dosing adjusted ac- cording to trough level, with a target of 15 to 20 µg per milliliter	5–67	Prevalence of microorganisms: Liu et al. ¹⁴ ; dose: Liu et al. ¹⁴ ; extent of bone penetration: Landersdorfer et al. ²³
Linezolid, if no response to vancomycin	30 administered in 3 equal doses	1.2 g for no more than 28 days	40-51	Dose: Kaplan et al., ²⁴ Chen et al. ²⁵ ; extent of bone penetration: Landersdorfer et al. ²³
Alternatives for specific agents				
Ampicillin or amoxicillin for group A beta-hemolytic streptococcus, <i>Haemophilus influenzae</i> type b (beta-lactamase–negative strains), and <i>S. pneumoniae</i>	150–200 admin- istered in 4 equal doses	Approximately 8–12 g	3-31	Dose: Peltola et al. ⁹ ; extent of bone penetration: Landersdorfer et al. ²³
Chloramphenicol, if safer agents not available or affordable	75 administered in 3 equal doses	2–4 g	39	Dose: Krogstad ¹ ; extent of bone penetration: Summersgill et al. ²⁶

SWITCH INTRAVENOUS \rightarrow ORAL THERAPY

•Improvement

Normalization PCR (ridotta del 50%) and VES (ridotta del 20%)
No fever for > 48-72 h

ORAL ANTIBIOTIC

Excellent bone penetration
Same degree of antibacterial coverage as parenteral drug
Ability to take oral drug

Cephalexin (80-100 mg/kg/24 h every 8h) OR Clindamycin (30-40 mg/kg/24 h every 8h)

Increasing incidence CA-MRSA and Clindamycin-resistant SA Lack of studies in children

Expert Rev Anti Infect Ther 2010

DURATION OF THERAPY

Depending on

- •Organism isolated
- •Age
- Clinical course
- Locus of infection

At least 4-6 Weeks (NEJM 2014)

Physical Therapy

Affected extremity kept in extension with **temporary casts**

Spondylodiscitis

1° Hp: Infection of a disc and two adjacent vertebrae 2° Hp: Self-limiting inflammatory condition

•Haematogenous isolated infection intervertebral disc (vascular in child) then involvement adiacent end-plates (60-80%)

•Classically refuse to walk, to sit down or to bend, gait disturbances, back/abdominal pain

•S. Aureus (but only 60% positive cultures) J Bone Joint Surg Br 2012 Streptococcus species

•Complication → extension paravertebral soft tissue epidural space meninges spinal cord → bone distruction

Classification

•Neonatal age (<6 months)

most serious Multiple infectious foci → septicemia Vertebrae severely damaged Neurologic findings 80% S. aureus

•Infants (6 months - 4 years)

60% of all spondylodiscitis Biopsies: sterile or K. Kingae

•Older child (> 4 years) Vertebral osteomyelitis Febrile, ill-appearing

Swiss Med Wkly 2014

MRN

Gold standard for pyogenic spondylodiscitis T1 weighted images with contrast → enhancement end-plat/disc interface T2 weighted fat signal-suppressed → increased signal intensity within involved marrow

Management and outcome

Spinal imobilization for 10-12 w
Careful monitoring laboratory/clinic/radiology
Accurate microbiological diagnosis (blood cultures, aspirates) and appropriate antibiotics
6-8 w therapy